A First Look at Unstable Mobility Management in Cellular Networks

Yuanjie Li¹ Jiaqi Xu² **Chunyi Peng**² Songwu Lu¹ ¹University of California, Los Angeles ²The Ohio State University HotMobile'16

Ubiquitous Cellular Network Access

Mobility Management (MM) via Handoff

Seamless connectivity (via switching the serving cell)
 Each cell: limited radio coverage

Chunyi Peng

Desirable Handoff: Stability

Why desirable?

- Handoff comes at a cost
 - Multi-round signaling exchange
 - Service

disruption/degradation

Converge to certain cell given an invariant setting

Chunyi Peng

Desirable Handoff **Problematic Handoff** 6 .(<u>·)</u>) (•) Hand Cell 3 Cell 1 Cell 3 Cell 1 (\cdot) (4) 2 Cell 2 movemen Cell Instability (persistent loop): Stability □ C1->C2->C3->C1->C2->C3... Converge to certain cell

Chunyi Peng

This Work: Instability in Mobility Management

((•))

- Q1: Does it exist in real networks?
- Q2: Why unstable?
- Q3: How to identify such risk?

Caused by fundamental (persistent) conflicts in policy not by transient factors (radio dynamics etc)

Q1: Does unstable MM exist in reality?

- Unfortunately, Yes!

3-Cell Loop Example

Negative Impacts in Real-world

- Hurt both carriers and users
- Excessive signaling overhead (2-8x)

Performance degradation
 (10+ fold slowdown)

Q2: Why is MM unstable?

Distributed Nature of Handoff

Each handoff: trigger-decision-execution phases

Handoff for Versatile Demands

3-Cell Loop Example

Cell1: 4G Cell2: Femtocell (3G) Cell3: 3G

Rule/preference configuration@C1 (4G)
 C2 (Femto) > C1 (4G) for offloading
 C1 (4G) > C3 (3G) for higher-speed
<u><u></u>(C1: C1→ C2</u>
@C2 (3G Femto)
 Best radio strength with same
preferences for all cells
$C2: C2 \rightarrow C3$
@C3 (3G)
 C1 (4G) > C3 (3G) for higher-speed
$C3: C3 \rightarrow C1$

From Example to Generalization

- Each handoff decision: t = Fs(s, C)
 - □ s: serving cell
 - C: set of candidate cells
 - □ *Fs*: decision function for serving cell s
 - □ t: target cell
- The sequence of handoff decisions

$$s \rightarrow Fs(s) \rightarrow \cdots c_i \rightarrow [c_{i+1} = Fc_i(c_i)] \rightarrow \cdots$$
, $ci \in C$.

From Example to Generalization

Instability = No convergence

□ e.g., persistent loop: $\mathbf{c} \rightarrow \cdots \mathbf{c}_i \rightarrow \mathbf{c}_{i+1} \rightarrow \cdots \mathbf{c}_i$.

• [Necessary stability condition] there exists at least one t, s.t. $\exists t \in C, t = Ft(t, C)$

[Necessary and sufficient condition] (1) ∃t ∈ C,
 t = Ft(t, C); (2) there exists a handoff path from the initial cell s to the desirable t

Q3: How to detect possible instability?

MMDIAG

- In-device diagnosis
 - Carriers: reluctant to provide network-side MM info
- Two-phase: analyzer and validation

MMDIAG

- Decision logic, configuration parameters and runtime observation (scenario)
- Violation check

MMDIAG

HotMobile'16

Real-World Findings

- One top-tier US carrier
- Los Angeles and Columbus

63 locations (outdoor)50 spots (indoor)

Chunyi Peng

Four Classes

Four Classes

- #3: Imprudent 4G upgrade One 4G-only loop #4: uncoordinated
 - Ioad balancing
 One 4G-only
 loop (active)
 Chunyi Peng

Takeaway

- Largely stable in practice
 - Instability mainly caused by Femtocells or incompatible upgrades

- But in principle, instability likely exists
 - Distributed nature
 - Diversity and external (non-carrier) factors in case of heterogeneous networks (femtocells, small cells, WiFi, etc)

Open Issues

- Non-stability properties
 - Handoff converges to an undesirable choice (3G/2G when 4G available)
- Cooperate with network-side efforts
- From detection to fix
 - Report identified problems to carriers
 - Assist end-devices to intervene the loop

Summary

 A first look at instability in mobility management over cellular network

 Disclose real-world persistent loops caused by misconfigurations and policy conflicts

- Propose MMDIAG to detect unstable MM
- Call for more attention and efforts

Thank you! Questions?