
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Device-Customized Multi-Carrier Network
Access on Commodity Smartphones

Yuanjie Li , Chunyi Peng , Haotian Deng, Zengwen Yuan, Guan-Hua Tu, Jiayao Li, Songwu Lu, and Xi Li

Abstract— Accessing multiple carrier networks (T-Mobile,
Sprint, AT&T, and so on) offers a promising paradigm for
smartphones to boost its mobile network quality. However,
the current practice does not achieve the full potential of this
approach because it has not utilized fine-grained, cellular-specific
domain knowledge. Our experiments and code analysis discover
three implementation-independent issues: 1) it may not trigger
the anticipated switch when the serving carrier network is poor;
2) the switch takes a much longer time than needed; and 3) the
device fails to choose the high-quality network (e.g., selecting 3G
rather than 4G). To address them, we propose iCellular, which
exploits low-level cellular information at the device to improve
multi-carrier access. iCellular is proactive and adaptive in its
multi-carrier selection by leveraging existing end-device mecha-
nisms and standards-complaint procedures. It performs adaptive
monitoring to ensure responsive selection and minimal service
disruption and enhances carrier selection with online learning
and runtime decision fault prevention. It is readily deployable
on smartphones without infrastructure/hardware modifications.
We implement iCellular on commodity phones and harness
the efforts of Project Fi to assess multi-carrier access over
two U.S. carriers: T-Mobile and Sprint. Our evaluation shows
that, iCellular boosts the devices’ throughput with up to 3.74×
throughput improvement, 6.9× suspension reduction, and 1.9×
latency decrement over the state of the art, with moderate CPU,
and memory and energy overheads.

Index Terms— 4G mobile communication, 5G mobile commu-
nication, multi-carrier network access, project Fi.

I. INTRODUCTION

MOBILE Internet access has become an essential part
of our daily life. From the user’s perspective, (s)he

demands for high-quality, anytime, and anywhere network
access. From the infrastructure’s standpoint, carriers are
migrating towards faster technologies (e.g., from 3G to 4G

Manuscript received October 2, 2017; revised May 18, 2018; accepted
August 26, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor Y. Yi. The work of Dr. Yuanjie Li, Mr. Zengwen Yuan and
Dr. Songwu Lu was partially supported by NSF grants 1423576 and
1526985. The work of Dr. Chunyi Peng is partially supported by NSF grants
1749049, 1421440, and 1750953. Dr. Xi Li is the corresponding author, and
acknowledges the funding support of NSFC grants 61772482 and 61272131.
Dr. Yuanjie Li is the student author. (Corresponding author: Yuanjie Li.)

Y. Li, Z. Yuan, J. Li, and S. Lu are with the University of California at
Los Angeles, Los Angeles, CA 90095 USA (e-mail: yuanjie.li@cs.ucla.edu;
zyuan@cs.ucla.edu; likayo@ucla.edu; slu@cs.ucla.edu).

C. Peng and H. Deng are with Purdue University, West Lafayette,
IN 47907 USA (e-mail: chunyi@purdue.edu; deng164@purdue.edu).

G.-H. Tu is with Michigan State University, East Lansing, MI 48824 USA
(e-mail: ghtu@msu.edu).

X. Li is with the University of Science and Technology of China,
Hefei 230000, China (e-mail: llxx@ustc.edu.cn).

Digital Object Identifier 10.1109/TNET.2018.2869492

LTE and future 5G), while boosting network capacity through
dense deployment and efficient spectrum utilization. Despite
such continuous efforts, no single carrier can ensure complete
coverage or highest access quality at any place and anytime.

Besides the infrastructure-side upgrades, a promising alter-
native approach is to leverage multiple carrier networks at the
end device. In reality, most regions are covered by several
carriers (say, Verizon, T-Mobile, Sprint, and AT&T in the
US). With multi-carrier access, the device may select the best
carrier over time and improve its overall access quality. The
industrial efforts have recently emerged to provide 3G/4G
multi-carrier access via universal SIM card, including Google
Project Fi [26], Apple SIM [14], Samsung e-SIM [24], Huawei
Skytone [27], to name a few. The ongoing 5G desgins also seek
to support multiple, heterogenous access technologies [40].

Unfortunately, our study shows that, the full benefits of
multi-carrier access can be constrained by today’s design. We
examine Google Project Fi via experiments and code analysis.
We discover three issues (§III): (P1) The anticipated switch
is never triggered even when the serving carrier’s coverage
is pretty weak; (P2) The switch takes rather long time (tens
of seconds or minutes) and prolongs service unavailability;
and (P3) the device fails to choose the high-quality net-
work (e.g., selecting 3G with weaker coverage rather than
4G with stronger coverage). All issues are independent of
the implementations. Project Fi users have experienced these
problems [15], but without knowing the causes or solutions.

It turns out that, these issues are not specific to the imple-
mentation of Project Fi. Instead, they are rooted in the conflicts
between legacy mobile network design and device’s multi-
carrier access requests. With the single-carrier scenario in
mind, the 3G/4G design chooses “smart core dumb end”. For
this reason, it does not expose the low-level cellular informa-
tion (e.g., available candidate carriers, which carriers to scan
in switch, and radio/QoS profile for each carrier) to OS on end
device. In multi-carrier access, however, the end intelligence
is a necessity, since individual carrier no longer has global
view for high-quality decision. Without leveraging low-level
cellular information on device, today’s carrier selection does
not fulfill the end intelligence of exploring multiple carriers.

While the problem may be solved by the future architecture
redesign (say, 5G), it usually takes years to accomplish. More-
over, we observe that some ongoing 5G standardizations [11]
inherit the inter-carrier switch mechanisms today, and may
suffer from the same issues. Instead, we seek to devise a
solution that works with the current (and future 5G) network
and the ongoing industrial efforts. Specifically, we explore
the following problem: Can we leverage low-level cellular
information and mechanisms at the device to further improve
multi-carrier access? Our study yields a positive answer.

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5931-3894
https://orcid.org/0000-0003-2945-4981

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. Multi-carrier network access (left) and inter-carrier switch via PLMN
selection (right).

We propose iCellular, a client-side service to let mobile
devices customize their own cellular network access.
Complementing the design of Project Fi, iCellular further
leverages low-level, runtime cellular information at the device
during its carrier selection. iCellular is built on top of current
mechanisms at the device, but applies cross-layer adaptations
to ensure responsive multi-carrier access with minimal dis-
ruption. To facilitate the device to make proper decisions,
iCellular exploits online learning (with offline bootstrap) to
predict the performance of heterogenous carriers, and provides
built-in strategies for better usability. It further safeguards
access decisions with fault prevention techniques. We imple-
ment iCellular on commodity phones (Nexus 6, Nexus 6P and
Pixel). Our evaluation shows that, iCellular can achieve 3.74x
throughput improvement and 1.9x latency reduction on aver-
age by selecting the best mobile carrier. Meanwhile, iCellular
has negligible impacts on the device’s data service and OS
resource utilization (less than 2% CPU usage), approximates
the lower bounds of responsiveness and switch disruption, and
shields its selection strategies from decision faults.

II. MOBILE NETWORK ACCESS PRIMER

A carrier operates its mobile network (called public land
mobile network or PLMN) to offer services to its subscribers.
Each PLMN has many cells across geographical areas. Each
location is covered by multiple cells within each PLMN and
across several PLMNs (e.g., AT&T, T-Mobile, Sprint).

Single-Carrier Network Access: Today’s cellular network is
designed under the premise of single-carrier access. A mobile
device is supposed to gain access from its home PLMN. It
obtains radio access from the serving cell and further connects
to the core carrier network and the external Internet, as shown
in Figure 1. If the current cell can no longer serve the device
(e.g., out of its coverage), the device is migrated to another
available cell within the same PLMN. This is called handoff.

Roaming Between Carriers: When the home PLMN cannot
serve its subscribers (e.g., in a foreign country), the device
may roam to other carriers (visiting networks). This is realized
through the PLMN selection procedure between carriers [10],
which is a mandatory function for all commodity phones.
It supports both automatic (based on a pre-defined PLMN
priority list) and manual modes. As shown in the right plot
of Figure 1, the PLMN selection takes three steps: (1) Trigger.
The procedure is invoked when the home network service is
no longer available (e.g. out of coverage); (2) Scanning. The
mobile device scan the available carriers’ spectrums and radio
quality. The availability is usually determined by their radio
quality (e.g., the signal strength larger than one threshold).
(3) Select. The selection of carriers is based on pre-defined

criteria or user manual operation. In the automatic mode,
the available PLMN with the highest priority will be selected.
The PLMN selection will then stop the scanning and
change the carrier. In the manual mode, the subscriber is
provided the list of all available carriers for the decision.
If the device decides to switch, it will deregister from the
current carrier network and then register to a new one.
In this process, the data/voice contexts (e.g. IP address, QoS
configuration) has to change accordingly. The network access
may thus be temporarily unavailable. This is acceptable since
inter-carrier switch is assumed to be infrequent, thus having
limited impacts.

Multi-Carrier Access With Universal SIM Card: Recent
industrial efforts aim at providing mobile device access to
multiple carriers with a single SIM card. They include Google
Project Fi [26], Apple SIM [14], and Samsung e-SIM [24].
With such SIM card, the device can access multiple cellular
carriers (e.g., T-Mobile, Sprint and US Cellular in Project Fi).
This is achieved by maintaining multiple cellular carriers’
profiles (including the identity, security keys, and radio para-
meters) inside the SIM card. Given only one cellular interface,
the device uses one carrier at a time, i.e. only one cellular
carrier profile can be activated. Similar to roaming, the switch
between carriers is based on the PLMN selection inside the
hardware interface. The inter-carrier switch decisions can be
controlled by the software logic, as we will show below.

III. MULTI-CARRIER ACCESS: PROMISES & ISSUES

We quantify the benefits of multi-carrier access, and identify
the downsides of existing efforts. The identified limitations are
independent of implementations, but rooted in 3G/4G design.

Methodology: We take a two-step approach to studying the
current multi-carrier access. We first conduct an empirical
study to unveil the benefits and limitations of the multi-
carrier access in reality. Then to understand the root causes
of these limitations, we perform the code analysis of Google
Project Fi [26], a popular multi-carrier access solution since
2015. We decipher its phone-side app, uncover its switch
mechanisms and algorithms, and validate that these limitations
are independent of specific implementations.
◦ Empirical study: We conduct both controlled experiments

and a two-month user study using two Nexus 6 phones with
Google Project Fi [26], which was released in May 2015.
Project Fi provides access to three carriers (T-Mobile, Sprint
and U.S. Cellular) in U.S. and covers 135 countries around
the world. It develops a proprietary mechanism on commodity
phones for the automatic carrier selection. We contacted
Project Fi team and learned that such mechanism aims to
optimize user experience, and considers network performance,
battery usage and data activity during selection. We validate
this by demystifying Project Fi’s implementation (§III-B).

In each controlled test, we use a Nexus 6 phone with
a Project Fi SIM card, and test with Project Fi’s automatic
carrier selection mode. We walk along two routes within the
campus buildings in Los Angeles (west coast) and Columbus
(Midwest) at the idle mode (no data/voice, screen off). We
walk slowly (< 1 m/s) and record the serving carrier (“T” for
T-Mobile, “S” for Sprint) and its network type (4G or 3G)
per second. Meanwhile, we carry other accompanying phones
to record the radio signal strength of each access option
(T-4G, T-3G, S-4G, S-3G).1 We run each test 10 times

1U.S. Cellular is not available in our areas.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: DEVICE-CUSTOMIZED MULTI-CARRIER NETWORK ACCESS ON COMMODITY SMARTPHONES 3

Fig. 2. An example log for serving carriers and networks and three problematic instances through Project Fi. (a) An example log over two walking routes.
(b) P1: no switch. (c) P2: disruption. (d) P3: unwise switch.

and similar results are consistently observed in all the tests.
In the user study (07/31/15–09/02/15 and 09/01/17–09/30/17),
we use the Project Fi-enabled phones (Nexus 6/6p and
Pixel) as usual and collect background device and cellular
events with MobileInsight, an in-phone cellular monitoring
tool [36]. We have collected 10.0GB logs with MobileInsight
in total, with 1,250,596 messages from radio resource con-
trol (RRC), 217,971 messages from mobility management
(MM), and 39,358 messages from session management (SM).
In §III-A, we present the results from the controlled experi-
ments as motivating examples. The user study to be described
in §IV and §VI confirms that these issues are common in
practice.
◦ Code Analysis: The Project Fi’s phone-side app is not

open sourced. To analyze it, we decipher its installation
package that is readily available inside the phones (in /sys-
tem/app/Tycho/Tycho.apk).2 We decompile it into Java code
using smali/baksmali [30]. Note that this code has been
obfuscated as anonymous variables, classes, and member
methods. To this end, we annotate the code as follows. We
collect Project Fi’s logs (from Android logcat) by running
it under the same settings as the experiments, compare the
log information with the debugging messages inside the
decompiled source code, and map the corresponding code to
Project Fi’s solution components. Our analysis is based on
Project Fi version J.2.5.18, which includes 91,438 lines of
code after the decompilation.

A. Motivating Examples
Merits of Multi-Carrier Access: We first verify that exploit-

ing multiple carriers is indeed beneficial to service availability
and quality. Figure 2a shows the results from the controlled
experiments over two routes. On the first route [0s,190s),
Sprint gradually becomes weaker and then fades away, but
its dead zone is covered by T-Mobile. On the second route
[190s, 330s], in contrast, Sprint offers stronger coverage at
locations with weak coverages from T-Mobile. Multi-carrier
access indeed helps to enhance network service availability
by boosting radio coverage. For example, in [160s, 180s],
the phone switches to T-Mobile and retains its radio access
while Sprint is not available. Moreover, we confirm that
it improves data access throughput and user experiences.
Project Fi is indeed promising to improve the mobile Internet
quality.

Our examples further reveal three issues, which demonstrate
that the benefits of multi-carrier access have not been fulfilled.

2Tycho is the internal codename of Google Project Fi.

P1. No Anticipated Inter-Carrier Switch: It is desirable
for the device to migrate to another available carrier net-
work for better access quality, when the device perceives
degraded quality from its current, serving carrier. However,
our experiments show that, the device often gets stuck in
one carrier network, and misses the better network access
(e.g., during [40s, 60s] and [240s, 260s] of Figure 2). As
shown in Figure 2b, T-Mobile experiences extremely weak
radio coverage (< − 130 dBm in 4G and < − 110 dBm
in 3G), but the phone never makes any attempt to move to
Sprint, regardless of how strong Sprint’s radio signal is. As a
result, the device fails to improve its access quality. Moreover,
we find that the expected switch often occurs until its access
to the original carrier (here, T-Mobile) is lost. This is rooted
in the fact that the inter-carrier switch is triggered when the
serving carrier fails. Therefore, the device becomes out of
service in this scenario, although better carrier access remains
available.

P2. Long Switch Time and Service Disruption: Even
when inter-carrier switch is eventually triggered, it may dis-
rupt access for tens of seconds or even several minutes
(see Figure 7 for the user-study results). In the example
of Figure 2c, the phone starts Sprint→T-Mobile roaming
at the 140th second since it leaves Sprint’s 3G coverage
(≤ − 116dBm according to [6]), but it takes 17.3s to gain
access to T-Mobile 4G. This duration is much longer than the
typical handoff latency (possibly several seconds [47]). It is
likely to halt or even abort any ongoing data service. We look
into the event logs (Figure 3) to examine why the switch is
slow. It turns out that, most of the switch time is wasted on
an exhaustive scanning of all possible cells, including nearby
cells from AT&T and Verizon. In this example, it spends
14.7s on radio-band scanning and 2.6s on completing the
registration (attachment) to the new carrier (here, T-Mobile).
Note that, such heavy scanning overhead is not incurred by any
implementation glitch. Instead, it is rooted in the Project Fi’s
design, which selects a new carrier network only after an
exhaustive scanning process. In this work, we want to show
that such large latency is unnecessary. It can be reduced
without compromising inter-carrier selection.

P3. Unwise Decision and Unnecessary Performance Degra-
dation: Our next finding is that, the device fails to migrate to
the better choice, thus is unable to enjoy the full benefits of
multi-carrier access. The phone often moves to 3G offered by
the same carrier, rather than the 4G network from the other
carrier that yields higher speed. Figure 2d illustrates two such
instances. After entering an area without Sprint 4G at the 91st
second, the device switches to Sprint 3G, despite stronger

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. Event logs during P2 (disruption) of Fig. 2c.

Fig. 4. Google Project Fi’s multi-carrier access app.

radio signals from T-Mobile 4G. This indicates that the
intra-carrier handoff is preferred over the inter-carrier switch in
practice. Unfortunately, such a preference choice prevents the
inter-carrier switch from taking effect. Even worse, obstacles
still remain even when the network access to the original
carrier has been shortly disrupted. For instance, during [267s,
273s], the original carrier (T-Mobile 3G) is still chosen. In
this case, T-Mobile 4G and 3G networks almost have no
coverage. In short, the device acts as a single-carrier phone
in most cases, even with the multi-carrier access capability.
Inter-carrier switch is not triggered as expected.

B. Demystifying Google Project Fi
We next perform the code analysis of Google Project Fi. We

show its key mechanisms and switch logics, and demonstrate
why it cannot address the limitations P1–P3 in §III-A.

Project Fi provides inter-carrier switching using a phone-
side system app (overviewed in Figure 4). It has three major
components: A pool of background monitors, a central switch
decision controller, and a switch executor. Each monitor tracks
specific Android-level events, and triggers a switch request
when certain criteria is satisfied (details below). The controller
accepts asynchronous switch requests from all monitors, and
runs its decision logic to determine the target carrier. Then it
invokes the switch executor to perform the inter-carrier switch.

Concurrent Background Monitors: Project Fi evaluates the
serving carrier networks based on multiple factors, such as
the network quality, geographical locations, and international
roaming policies. To this end, it runs multiple background
monitors to track these information. These monitors work
asynchronously, and collect the carrier information mainly
through the public, OS-level APIs. For example, to evalu-
ate the serving carrier network’s qualities, Project Fi’s poor
network monitor queries the network status from Android’s
ConnectivityManager [13]. It issues a switch request
when the serving carrier network is no longer accessible.

Three-Phase Decision Logic: Upon receiving the switch
requests, the controller runs a three-phase logic to determine
the target carrier network. First, it applies monitor-specific
criteria to accept (or reject) switch requests from each mon-
itors. Consider the example of the poor network monitor.

TABLE I

PREDEFINED RATING IN THE POOR NETWORK MONITOR

TABLE II

PRIORITIES FOR SOME OF PROJECT FI’S MONITORS

The controller pre-defines the rating of each carrier network,
as shown in Table I. It seeks to switch to another network if the
current one does not have the highest rating. Upon receiving
the request to switch to another carrier, the switch controller
cannot determine if the candidate carrier network has a better
rating, since the Android APIs cannot gather information on
available carrier networks. To this end, the controller uses
a trial-and-error approach: It first invokes the switch (details
below), and tests if this candidate carrier network has higher
rating according to Table I. If not, the controller will block
this carrier network, and try the next one in the next round
of selection. To prevent excessive switches, a lockdown timer
is adopted for the serving carrier network. The controller will
not accept the next switch request until the timer expires.

Second, given the switch requests from multiple monitors,
the controller selects the single target carrier. Note that these
monitors run independently, and may raise requests with
conflicting carrier networks. Project Fi resolves the conflicts
by predefining the priorities for the monitors (Table I), and
accepting the switch request with the highest priority.

Last, to prevent dirsupting the ongoing network services,
Project Fi performs the runtime checking. It will pend the
switch request if the phone is making a voice call, or send-
ing/receiving the cellular data. It will reject the switch request
if (1) there is already an inter-carrier switch in progress; or (2)
automatic switching is disabled. Otherwise, the switch request
will be approved and forwarded to the switch executor.

Switch Execution: Project Fi performs the inter-carrier
switch using the standard APIs in Android. It first de-registers
from the serving carrier network. Next, Project Fi reconfig-
ures the SIM card so that the device can be recognized by
the target carrier network. By calling a kernel-space daemon,
it deactivates the old carrier’s SIM-card profile, and activates
of the new-carrier’s profile. Afterwards, it re-enables the cellu-
lar service. The underlying cellular modem will be responsible
for scanning the cells and registering to the target carrier
network.

Limitations: While Project Fi has made extensive efforts
to fulfill the potentials of multi-carrier access using Android
APIs, we next show that it cannot fully solve P1–P3.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: DEVICE-CUSTOMIZED MULTI-CARRIER NETWORK ACCESS ON COMMODITY SMARTPHONES 5

The fundamental problem is that, it does not leverage the low-
level cellular information or mechanisms. Note that such lim-
itation is not specific to Project Fi’s implementations. Instead,
any implementations that leverage the OS-level information
and mechanisms only will have the same limitation.
◦ P1: No anticipated inter-carrier switch. To perform

the anticipated switch, the device should keep monitoring
other carriers even when the serving carrier is still available.
Unfortunately, Project Fi cannot achieve this: Its poor network
monitor relies on Android’s ConnectivityManager only,
which does not offer this capability. In fact, Android does not
provide APIs to perform proactive carrier monitoring; such
action can be realized by the low-level hardware (modem).
◦ P2: Long switch time and service disruption. To reduce the

switch time, the device should refrain from exhaustive search
of all carriers at all times. This can only be controlled by the
underlying cellular mechanisms. Unfortunately, Project Fi’s
switch executor relies on the standard PLMN selection (§II).
Since PLMN selection scans all available carriers, it cannot
prevent the exhaustive search.
◦ P3: Unwise decision and unnecessary performance degra-

dation. To make a wise selection, the device should treat all
intra/inter-carrier switches equally, collect information from
available carriers, and select the best carrier network. However,
Project Fi’s three-phase decision logic can only control the
inter-carrier switch; intra-carrier switch is still controlled
by the low-level cellular mechanisms (handoffs). Moreover,
it lacks sufficient information from available carriers to
determine the best carrier network. While its trail-and-error
approach can help collect some information, it is at the cost
of more switches and thus service disruptions.

C. Insights

The above examples and code analysis also shed lights on
how to solve the three problems. The key is to leverage low-
level cellular information and mechanisms at the device.

Specifically, performing the anticipated switch (P1) states
that, the device performs inter-carrier switch upon detecting a
better carrier, even when the serving carrier is still available.
This requires the device to learn all available carriers and their
quality at runtime. Note that such information can be obtained
from the low-level cellular events. However, the default opera-
tion on commodity phones will not do so. Moreover, the naive
approach of forcing the phone to proactively scan other carriers
may lead to temporary disconnection from the current carrier
network. We elaborate on how we address them in §IV-A.

To reduce the switch time (P2), the device should refrain
from exhaustive search of all carriers. This requires the fine-
grained control on which carriers should be scanned. It can be
done by configuring the low-level mechanism for monitoring.

To make a wise selection decision (P3), the device should
treat all intra-carrier handoffs and inter-carrier switches
equally, and select the best carrier network. This requires the
device to directly initiate the inter-carrier switch when needed.
This also calls for leveraging the low-level cellular mechanism.

In summary, low-level domain knowledge can be exploited
to effectively address all three issues. However, the default
operation mode on commodity phones does not expose such
fine-grained cellular information and mechanisms to higher
layers. The reason is that, the 3G/4G network follows the
“smart core, dumb end” paradigm with the single-carrier usage
scenario in mind. The end device does not need to exploit

Fig. 5. iCellular system architecture.

such information when selecting its carrier access. Since such
low-level, cellular-specific domain knowledge is not available
for the default operation mode, it might be the reason why
Project Fi has not explored this direction in its current design.

IV. ICELLULAR DESIGN

We now present iCellular, which explores an alternative
dimension to improve multi-carrier access. iCellular comple-
ments the design of Project Fi by leveraging low-level cellular
information and mechanisms. It seeks to further empower the
end device to have more control on its carrier selection, while
addressing the issues in §III-A.

For incremental deployability, iCellular is built on top of
the PLMN selection [9], [10], a standardized mechanism
mandatory on all phones. Note that, however, the basic PLMN
selection suffers from similar issues in §III-A: migrating to
other carriers is not preferred unless the home carrier fails
(P1); the exhaustive scanning (P2) and the preferable intra-
carrier handoffs (P3) are still in use. The reason is that,
the default PLMN selection scheme is designed under the
premise of single-carrier access. While roaming to other
carriers is allowed, it is not preferred by the home carrier
unless it fails to offer network access to its subscribers.
So the basic PLMN selection has the following features:
(1) Passive triggering/monitoring: When being served by one
carrier, the device should not monitor other carriers or trigger
the selection until the current one fails (i.e., out of coverage);
(2) Network-controlled selection: The device should select the
new carrier based on the preferences pre-defined by the home
carrier and stored in the SIM card; (3) Hard switch: The device
should deregister from the old carrier first, and then register
to the new one. We thus need to adapt the PLMN selection
scheme to the multi-carrier context by using low-level cellular
events.

Figure 5 illustrates an overview of iCellular. In brief,
iCellular systematically enhances the devices’ role in every
step of inter-carrier switch with runtime cellular information,
spanning triggering/monitoring, decision making and switch
execution. To be incrementally deployable on commodity
phones, we build iCellular on top of the existing mechanisms
from the phone’s cellular interface [5]. We exploit the freedom
given by the standards, which allow devices to tune config-
urations and operations to some extent. To ensure respon-
siveness and minimal disruption, iCellular applies cross-layer
adaptations over existing mechanisms (§IV-A and §IV-B).
To facilitate the devices to make wise decisions, iCellular

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III

CELLULAR EVENTS USED IN ICELLULAR

offers cross-layer online learning service to predict network
performance (§IV-C), and protects devices from decision faults
(§IV-D). To enable adaptation, prediction and decision fault
prevention, iCellular incorporates realtime feedbacks extracted
from low-level cellular events. Different from approaches
using mobile OS APIs, we leverage the in-phone diagnos-
tic port to collect the runtime cellular events for iCellular
(Table III). These components are designed to be scalable,
without incurring heavy signaling overhead to the device and
network.

A. Adaptive Monitoring
To enable device-initiated selection, the first task is to gather

runtime information on available carrier networks. This is done
through active monitoring. It allows a device to scan other
carriers even while being served by one. This would prevent
the device from missing a better carrier network (P1 and
P3 in §III). For this purpose, the only viable mechanism on
commodity phones is the manual network search [10]. It was
designed to let a device manually scan all available carriers.
Once initiated, the device scans neighbor carriers’ frequency
bands, extracts the network status from the broadcasted system
information block, and measures their radio quality. No extra
signaling overhead is incurred, since the active monitoring
approach does not activate signaling exchanges between the
device and the network. For incremental deployability, we real-
ize the active monitoring atop the manual network search.

Note that naive manual search does not satisfy properties of
minimal-disruption and responsiveness. First, scanning neigh-
bor carriers may disrupt the network service. The device has
to re-synchronize to other carriers’ frequency bands, during
which it cannot exchange traffic with the current carrier.
Second, it is exhaustive to all carriers by design. Even if the
device is not interested in certain carriers (e.g., no roaming
contract), this function would still scan them, thus delaying
the device’s decision and wasting more power. The chal-
lenge is that, both issues cannot be directly addressed with
app-level information only. iCellular thus devises cross-layer
adaptions.

Disruption Avoidance: To minimize disruptions on ongo-
ing services, iCellular schedules scanning events only when
the device has no application traffic delivery. This requires
iCellular to monitor the uplink and downlink traffic actvities.
While the uplink one can be directly known from the device
itself, the status for downlink traffic is hard to predict. Traffic
may arrive when the device has re-synchronized to other
carriers. If so, its reception could be delayed or even lost.

Fig. 6. Cell scan time.

iCellular prevents this by using the low-level cellular
event feedback. We observe that in the 3G/4G network,
the downlink data reception is regulated by the periodical
paging cycle (e.g., discontinuous reception in 4G [7], [43]). To
save power, the 3G/4G base station assigns inactivity timers for
the device. The device periodically wakes up from the sleep
mode, monitors the paging channel to check downlink data
availability, and moves to the sleep mode again if no traffic
is coming. iCellular obtains this cycle configuration from the
radio resource control (RRC) messages, and schedules its
scanning operations only during the sleep mode. Figure 6
shows our logs of 4G per-cell search time at a mobile device
with Project Fi. It shows that, 79.2% of cells can be scanned
in less than one paging cycle. Others need more cycles to
complete the scanning. With this design, no paging event is
interrupted by monitoring.

A valid issue is that, the monitoring results may become
obsolete due to continuous data transmissions, thus leading to
wrong decisions. It is unlikely to happen in practice for two
reasons. First, most traffic tends to be bursty, which leaves
sufficient idle period for background monitoring. Second,
network performance tends to vary smoothly, and stale mon-
itoring results do not affect the final decision. Furthermore,
iCellular compares the elapsed time between the decision
making and the measurement. Obsolete measurements outside
the time window (say, 1 minute) will not be used.

Minimal Search: Instead of exhausting all carriers, iCellular
scales the monitoring by restricting the manual search only to
device-specified carriers. The issue is that no such option is
available in the manual network search mechanism. We thus
adapt the PLMN preference. Given the list of carrier networks
of interests, iCellular configures the cellular interface to let
the manual search scan these carriers first. This is achieved
by assigning them with the highest PLMN preferences. In the
manual search, iCellular listens to the cellular events to see
which carrier is being scanned. These events include the per-
cell radio quality measurements, and its system information
block with PLMN identifiers. Once iCellular detects that the
device has finished scanning of the device-specified carriers,
it terminates the manual search. In this way, at most one more
cell would be scanned than user-specified ones (lower-bound):

nsearch,min ≤ nsearch,iCellular ≤ nsearch,min + 1 (1)

where nsearch,min is the minimal number of cells to scan, and
nsearch,iCellular counts the cell scanned by iCellular.

Monitoring-Decision Parallelism: Sometimes there is no
need to complete all the monitoring to determine the target
carrier network. For example, if the user prefers 4G, it can
decide to switch whenever a good 4G is reported, without
waiting for 3G results. iCellular thus allows devices to make
decisions with partial results, thus further accelerating the
process. Instead of waiting for all scanning results, iCellular
triggers the decision whenever new results are available.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: DEVICE-CUSTOMIZED MULTI-CARRIER NETWORK ACCESS ON COMMODITY SMARTPHONES 7

Fig. 7. Switch time.

B. Direct Inter-Carrier Switch

iCellular aims at reducing the disruption time incurred
by inter-carrier switching as much as it can. We find that,
there is enough room for this because most service disruption
time is caused by frequency band scanning (§III). With the
active monitoring function, iCellular does not need to scan
the carrier networks during switch. Specifically, given a target
carrier network, iCellular makes a direct switch by configuring
the target carrier with highest PLMN preference. It then
triggers a manual PLMN selection to the target carrier. This
way, the device would directly switch without unnecessary
scanning.

We next show how iCellular approximates to the lower
bound of the switch time. In cellular networks, switching
to another network requires at least de-registration from the
old network (detach), and registration to the new network
(attach). According to [8], the detach time is negligible, since
the device can detach directly without interactions to the old
carrier network. So the minimal disruption time in switch is
roughly equal to the attach time, i.e., Tswitch,min ≈Tattach.
For iCellular, no extra attempts to other carrier networks are
made. Since it is on top of the PLMN selection, the scanning
of the target carrier still remains. The switch time is thus

Tswitch,iCellular = ntTt + Tattach ≈ntTt + Tswitch,min (2)

where nt and Tt are the cell count and per-cell scanning time
for the target carrier network, respectively. Compared with
the attach time, this extra overhead is usually negligible in
practice. Figure 7 verifies this with our background monitoring
results in Project Fi. It shows that, iCellular indeed approxi-
mates the lower bound, despite this minor overhead.

C. Prediction for Heterogeneous Carriers

To decide which carrier network to switch to, the device
may gather the information on each carrier network. Ide-
ally, the device needs to measure every available carrier
network’s current performance (e.g., latency or throughput).
Unfortunately, this is deemed impossible. The device can only
measure the serving network’s performance; other candidates’
performances cannot be measured without registration.

Given this fact, iCellular decides to assist the device to
predict each carrier’s performance. Our predication is based
on a combination of offline [19] and online [28] regression
tree with domain-specific optimizations. It models the net-
work/application performance (y) as a function of a feature
vector (x1, x2), where x1 is runtime radio measurement and
x2 is carrier network profiles (detailed below). Note that
radio measurement alone is insufficient to predict performance,
because different carriers may apply heterogeneous radio
technologies and resource configurations. Our solution works
as follows.

TABLE IV

HETEROGENEOUS CELLULAR NETWORK PROFILES

Prediction Metric (y): This metric is used to rank the
performances of all available networks. We explore both
network-level (link throughput, radio latency) and application-
level ones (e.g., web loading latency, video suspension time).
They are obtained from both network and application events
(for example, Appendix B in [35] shows how to obtain
app-specific metrics). We want to point out that the app-
specific metric often leads to the same selection decision
(see the evaluation §VI). This is because the performance
characteristics of a carrier network tend to have consistent
impacts on all applications.

Feature Sample Collection: The training sample (x, y) for
a network is collected in the background, without interrupting
the device’s normal usage. A new training sample is collected
when a new observation of the performance metric y is
generated (e.g., throughput from physical layer, loading time
for Web-page download, latency per second for VoIP). In
the meantime, radio measurement and network profiles for
the serving network are recorded as x = (x1, x2). For the
radio quality x1, iCellular extracts the serving network’s RSRP
(if 4G) or RSCP (if 3G) from the runtime active monitor
(§IV-A). For the network profile, iCellular currently collects
two types (Table IV): (1) QoS profile from the data bearer
context in session management, which includes the delay class
and peak/maximum throughput; (2) radio parameters from the
RRC configuration message, which includes the physical and
MAC layer configurations. Note that the device cannot gain
these profiles without registration to the carrier network of
interest. To address this issue, we observe that network profiles
are quite predictable. This is validated by our 1-month user
study. Table IV lists the predictability of some parameters. For
each parameter, we choose the one with the highest probability,
and shows its occurrence probability. Note that, most QoS and
radio configurations are invariant of time and location. The
reason is that, the carriers tend to apply well-tested parameters,
with minor tunings to each base station/controller. We thus
only store a set of unique values, and reuse it for all the
applicable samples until changes are found.

Training and Prediction Over Streaming Samples: To train
the predictor, iCellular combines the offline training (for boot-
strap) with online update using streaming data. The predictor is
represented as a tree, with each interior node as a test condition
over x (radio measurements or profile fields). Each decision
is made upon the arrival of the feature vector x. It estimates
the per-network metric y and selects the one with the highest
rank. The training and prediction work as follows.
◦ Bootstrap with offline training. For the cold start, iCellular

pre-trains a regression tree as a basis. We extract a complete
set of feature vector samples S = {(x, y)} from our user-study
dataset. Then we train the regression tree as follows:

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

1) We search one field xi ∈ x (radio measurement or pro-
file) that maximizes the split of the data into two sub-sets
S1 and S2 (S1∪ S2= S, S1∩ S2= ∅). The following
function I quantifies the gain of split (based on samples’
variance), and is used as the optimization function:

I = sd(S) − (sd(S1) + sd(S2)) (3)

sd(S) =
1

|S|2
∑

i∈S

∑

j∈S

1
2
(yi − yj)2 (4)

Then we create the root using xi as the test condition.
2) After the split, we recursively apply step 1) to S1and S2.

In this way, we can construct two sub-trees and connect
them to the root. The search stops when no further gain
of splitting function I can be obtained.

◦ Online prediction tree update. To adapt to the tempo-
ral/spatial dynamics of the carrier network behaviors, iCellular
takes the new samples of radio measurements and carrier
profiles to improve its prediction accuracy over time. This
is performed in parallel with the normal usages, thus not
delaying iCellular’s functionalities. While there exists large
body of work training the prediction tree in a batched, offline
fashion, iCellular incrementally updates the regression tree
based on the runtime observations. It does not require to store
the historical samples, thus saving the memories inside the
phone.

When iCellular detects a new sample (x, y), it feeds the
sample into the predictor and runs two-phase processing:

1) Drift detection and model adaptation: The new sample
may deviate from the existing predictions. To this end,
iCellular detects the drift and incrementally update the
sub-trees with high errors. It runs the existing predictor
over new sample x, and obtains an estimated metric
y′. We perform Page–Hinckley (PH) change detection
test on the absolute error |y − y′|. If some parts of the
prediction tree does not fit the new observed data well,
the error on that part will surpass a given threshold. Such
event will trigger our model adaptation. We build an
alternate sub-tree for the region where drift is detected.
New samples will be supplied to re-grow the alternate
sub-tree for that region. Once the alternate tree provides
better accuracy, it replaces the old part and hence the
model is adapted.

2) Predictor update: Given the prediction tree model,
iCellular further updates the predictors with the incom-
ing samples. Similar to the bootstrap phase, iCellular
runs every N new samples, and searches a new field
(measurement or profile) that best splits the samples
using the same criteria in (3). Given the new split,
we create a new pair of leaves for this new field, and
completes the update of the prediction tree. Note that,
the choice of N affects how often the predictor may
be updated. In fact, the following Hoeffding bounds
applies: After N independent observations of a perfor-
mance metric y with value range R, with confidence
1 − δ, the prediction error ϵ = |y − y′| is bounded as
follows

ϵ =

√
R2ln(1/δ)

2N
(5)

Our current implementation chooses N = 30.
◦ Online prediction. Given the runtime observation x,

iCellular predicts the performance metric y as follows.

Fig. 8. Three types of improper switch decisions.

Fig. 9. Switch to a network with no voice support.

Starting from the root, it traverses the prediction tree based
on the value of x, until it reaches the leaf. The leaf value
will be reported as the predicted performance metrics. As
one optimization, we observe that heterogeneity profile x2 is
highly predictable (Table IV). So iCellular further optimizes
the algorithm by caching the branches whose parent node
tests heterogeneity profiles. This reduces the computation
overheads.

D. Decision Fault Prevention
Device-customized access strategy can be a double-edged

sword. With improper strategies, the device may make faulty
switch decisions and unexpectedly disrupt the service. Figure 8
shows three categories of failures caused by decision faults.
All can only be detected with low-level cellular information:

Failure 1 (No Network Access): Certain networks may be
temporarily inaccessible. For example, our user study reports
that, a Sprint 4G base station experiences a 10-min mainte-
nance, during which access is denied.

Failure 2 (No Voice Service): In some scenarios, the tar-
get carrier network cannot provide complete voice services.
Figure 9 shows an instance from our user study. T-Mobile
provides its voice service using circuit-switched-fall-back
(CSFB), which moves the device to 3G for the voice call.
However, there exist areas not covered by T-Mobile 3G (e.g.,
signal strength lower than − 95dBm according to [6]). In this
scenario, the user in Sprint 4G should not switch to T-Mobile
4G, which cannot support voice calls without 3G.

Failure 3 (Unexpected Low-Speed Data Service): The user
selection may not be honored by the individual carrier’s
handoff rules. Figure 10 reports an instance from our user
study. The user under Sprint 4G may decide to switch to one
T-Mobile 4G. However, under the same condition, T-Mobile’s
mobility rules (e.g., cell re-selection [9]) would switch its 4G
users to its 3G. In this case, the user’s decision to T-Mobile
4G is improper, because the target network (T-Mobile 3G) is
not preferred, and this switch incurs unnecessary disruptions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: DEVICE-CUSTOMIZED MULTI-CARRIER NETWORK ACCESS ON COMMODITY SMARTPHONES 9

Fig. 10. Interplay of user/network’s mobility.

Fig. 11. Overview of iCellular implementation.

To prevent decision faults, iCellular chooses to safeguard the
device’s decisions from those faulty ones. It checks whether
each carrier network has any of the above problems, and
excludes such carriers from the monitoring results. This pre-
vents the device from switching to these carrier networks.
iCellular first profiles each carrier’s low-level access-control
list from the RRC SIB message [7], data/voice preference
configuration from registration/location update messages [8],
and the network-side mobility rules from the RRC configura-
tion message [7], [9]. At runtime, for each candidate carrier,
it checks if it is in the forbidden list (Failure 1), has no voice
service with satisfactory 3G radio quality (Failure 2), or has
satisfied mobility rules for further switch (Failure 3). If any
condition is satisfied, it would be removed from the list.

V. IMPLEMENTATION

We have implemented iCellular on Motorola Nexus 6,
Huawei Nexus 6P, Google Pixel and Pixel 2. They
run Android OS 5.1/6.0/7.1 using Qualcomm Snapdragon
805/810/821 chipsets. All these phone models support 4G
LTE, 3G HSPA/UMTS/CDMA and 2G GSM. To activate
access to multiple cellular networks, we have installed
Project Fi SIM card on these phones. Figure 11 illustrates the
system implementation. At the user space, iCellular runs as
a daemon service on a rooted phone. To enable interactions
with the cellular interface, we activate the baseband process-
ing tools (in bootloader), and activate the diagnostic mode
(/dev/diag) and AT-command interfaces (/dev/smd11).

Basic APIs: iCellular allows the device to control its cellular
access strategies through three APIs: Monitor() for active
monitoring (§IV-A), Predictor() for performance predic-
tion (§IV-C) and SwitchTo() for direct switching (§IV-B).
The decision fault tolerance is enabled by default (§IV-D). To
customize its decision logic, the device can write a decision
callback using these APIs. Appendix A in [35] presents an
illustrative example on how to use them. Besides, iCellular
provides some built-in strategies on top of the basic APIs.
Devices can choose these pre-defined ones, rather than build
customized versions by themselves. We have developed three

strategies: prediction-based, radio quality only and profile only
(see §VI for performance comparisons).

Runtime Access to Low-Level Cellular Information: As
shown in §IV-A–§IV-D, iCellular relies on low-level cellular
events to perform cross-layer adaptations over the existing
mechanisms, predict the network performance, and avoid pos-
sible switch faults. Table III summarizes the events required
by iCellular, including the signaling messages exchanged
between the device and the network, and radio quality/load
measurements. Unfortunately, the mobile OS has very limited
access to these information. To this end, we develop an in-
phone solution MobileInsight [36] by exploiting the existing
cellular diagnostic mode. We enable the diagnostic mode on
the phone, redirect the cellular events from the diagnostic port
to the memory, and finally expose them to iCellular.

Adaptive Active Monitoring (§IV-A): We implement
Monitor()with manual search and adaptations. We leverage
the standard AT command interface [5] that controls the basic
phone functions and is readily available inside smartphones.
Our prototype initiates the search with an AT query command
AT+COPS=?. The non-disruption and minimal search adapta-
tions are implemented using the events in Table III.

Adaptive Direct Switch (§IV-B): We implement the
SwitchTo() on top of PLMN selection, with dynamic adap-
tations for direct switch. Ideally, this can be executed with the
AT commands AT+COPS=manual,carrier,network.
An exception is to switch to Sprint 3G, which uses
the 3GPP2’s EvDo/CDMA2000 technologies and disables
this command. In this case, we take an alternative
approach. We modify the preferred network type through
Android’s API setPreferredNetworkType, and change
the carrier with Project Fi’s secret code (34777 for Sprint,
34866 for T-Mobile). Admittedly, this approach may incur
extra switch overhead, but it is still acceptable (§VI-B).

Prediction for Heterogenous Carriers (§IV-C): We imple-
ment Predictor() in two steps. First, we implement the
online sample collection, which extracts radio measurements,
RRC configurations and QoS profiles as features from runtime
cellular messages. We also define a callback to collect the
network/application-level performance metrics. We then real-
ize the regression tree algorithm for training and prediction. To
bootstrap the online training, we have pre-trained a regression
tree using the offline algorithm and our user-study traces.

Decision Fault Prevention (§IV-D): The fault prevention is
implemented as a shim layer between the active monitoring
and basic APIs. It detects the potential switch faults based on
monitoring results and heterogeneity profiling, and excludes
the unreachable carrier networks from the monitoring results.
We also add a runtime checker in SwitchTo(), and prevent
devices from selecting carriers not in the scanning results.

VI. EVALUATION

We first present the overall performance improvement by
iCellular (§VI-A), and then show iCellular satisfies various
design properties in §IV (§VI-B). All experiments are con-
ducted on commodity Nexus 6 phones in two cities of Los
Angeles (west coast) and Columbus (Midwest), mainly around
two campuses. The results on Nexsus 6P and Pixel are similar.

A. Overall Performance
We use four representative applications to assess iCellular:

SpeedTest (bulk file transfer), Web (interactive latency for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 12. Performance of Speedtest, Web, Youtube, Skype using various
multi-carrier access schemes.

bursty traffic), Youtube (video streaming) and Skype (realtime
VoIP). We evaluate each app with quality-of-experience met-
rics whenever possible, i.e., downlink speed for SpeedTest,
page-loading time for Web [12] (measured with Firefox),
video suspension time for Youtube [38] (all videos with 720p
quality, measured by its APIs), and latency for Skype [29]
(measured with its tech info panel). The details to collect
performance metrics are given in Appendix B in [35]. We run
both pedestrian mobility and static tests. Along the walking
routes, we uniformly sample locations. Note that Project Fi’s
automatic selection protects the device’s data connectivity
by deferring its switch to the idle mode (§III-B). For fair
comparisons, we move to each sampled location in the idle
mode (no voice/data, screen off), wait for sufficiently long
time (≥ 1min) for potential switch in idle, and then start to test
each app. We have at least five test runs and use the median
value for evaluation.

We compare iCellular and its variants, with two baselines:
(i) Project Fi’s automatic selection and (ii) Optimal strat-
egy: We obtain the optimal access option by exhausting the
application or network performance at each location. It may
not be achieved in reality, but it serves as an ideal performance
benchmark. We test three built-in iCellular decision strategies
(§V): (1) Prediction-based: the default strategy in iCellular,
which chooses the carrier with the best ranking metric from
the predictor §IV-C. The predictor is trained based on our user-
study logs, and tested over different routes. (2) Radio-only:
the de-facto handoff strategy in 3G/4G. We implement the
standardized cell re-selection scheme [9]. Whenever a network
4G with its signal strength higher than -110dBm (defined
in [9]) exists, the strongest 4G carrier is chosen. Otherwise,
we choose the strongest 3G network. (3) Profile-only: the
device is migrated to the carrier network with the highest QoS
(see Table IV). For our iCellular strategies, we use the carrier
list with all network types supported by Project Fi.

Figure 12 plots their performances in eight instances (loca-
tions), which belong to three categories: both carriers with
acceptable coverage (Case 1-2), one carrier with acceptable
coverage but the other not (Case 3-5), both carriers with weak
coverage and one is even weaker (Case 6-8). We further com-
pare them with the optimal one in two dimensions: accuracy
toward the optimality, and the performance gap/improvement.

TABLE V

STATISTICS OF ACCURACY TOWARD THE OPTIMALITY

TABLE VI

WEIGHTS OF RADIO MEASUREMENT AND NETWORK PROFILES IN
ICELLULAR’S PREDICTION STRATEGY

Accuracy Toward Optimality: We compare the probability
that each scheme reaches the optimal network. Let I and
Iopt be the access options chosen by the test scheme and
the optimal strategy. We define the hit ratio as the matching
samples |(I .= Iopt)| over all test samples. Table V shows the
hit ratios of all schemes by different applications. iCellular ’s
prediction-based strategy makes a wiser multi-carrier access
decision. The hit ratios are 73.6%, 57.8%, 50.9% and 92.5%
in SpeedTest, Web, Youtube and Skype, respectively. They
are relatively small in Web and Youtube, but do not incur
much performance degradation (explained later). They are
usually higher than Project Fi’s automatic selection except for
Web. The mobility speed has minor impact on the prediction
accuracy, since it does not affect sample collection. Both
radio measurements and cellular network profiles contribute
to the high accuracy, but their impacts on all apps vary.
We calculate their normalized variable importance in the
regression tree (defined in [37]) and Table VI shows their
weights for four apps. We also find that, the metric specific
for one app often locates the better network for other apps
at the same location. The reason is that, the characteristics of
one carrier network tend to have consistent impact on all apps.
When the performance gap between two carriers is significant,
it would exhibit on all application-level metrics.

Data Service Performance: We next examine the data
performance by different schemes. We define the gap ratio
γ = |x − x∗|/x∗, where x is the performance using various
access strategies, xopt is the optimal performance. We plot
CDF of γ in Figure 13 and present the hit ratios and statistics
of γ+ in Table VII. Compared with Project Fi, iCellular
narrows its performance gap (e.g., reducing the maximal speed
loss from 73.7% (19.7Mbps) to 25.7%, and the maximal video
suspension time gap from 28.1s to 3.2s). The performance
gain varies with locations (see Figure 12). With acceptable
coverage (Case 1-2), Project Fi’s performance also approx-
imates the optimal one. However, at locations with weak
coverage, iCellular improves the device performance more
visibly. The performance gain varies with applications (traffic
patterns). Compared with other traffic, iCellular provides rel-
atively small improvement for Web browsing. The reason is
that, the Web traffic volume is relatively small, and no large
performance distinction appears among various access options.
However, for heavy traffic (e.g., file transfer), video streaming
and voice calls, iCellular substantially improves the perfor-
mance. The average improvement of iCellular over Project Fi

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: DEVICE-CUSTOMIZED MULTI-CARRIER NETWORK ACCESS ON COMMODITY SMARTPHONES 11

Fig. 13. The performance gaps from Project Fi and iCellular’s prediction
strategy to the optimality.

TABLE VII

PERFORMANCE GAPS FROM THE OPTIMAL ONE

approximates γfi − γicellular . On average, iCellular increases
23.8% downlink speed and reduces 7.3% loading time in Web,
37% suspension time in Youtube, 60.4% latency in Skype.
Since iCellular often selects the optimal access, the maximal
gain over Project Fi can be up to 46.5% in Web, 6.9x in
Youtube, 1.9x in Skype, and 3.74x in Speedtest.

Comparison Between the Built-In Strategies: iCellular’s
prediction strategy best approximates the optimal strategy.
It outperforms radio-only and profile-only variants (§IV-C).
We also see that, the importance of profile and radio mea-
surements varies across applications. For example, our log
analysis shows T-Mobile assigns Project Fi devices to the
interactive traffic class (Table IV), which is optimized for
delay-sensitive service [4].3 Instead, Sprint only allocates the
best-effort traffic class to these devices. This explains why the
profile-only strategy’s performance approximates the optimal
strategy for Skype. It also implies that, for a given application
(e.g., Skype), simpler strategy (rather than prediction), which
incurs smaller overhead, can be available for close-to-optimal
performance.

B. Efficiency and Low Overhead
We show the micro-benchmark evaluations on iCellular’s

key components, and validate their efficiency. We examine the
active monitoring, direct switch and fault prevention, and the
overhead of signaling, CPU, memory and battery usage.

Efficiency: We examine iCellular’s efficiency through two
adaptive module tests. First, we show that, iCellular’s adaptive

3This QoS is specific to Project Fi. For example, we verify that a T-Mobile
device with Samsung S5 is assigned lower background class.

Fig. 14. iCellular’s monitor avoids exhaustive search. (a) Total search time.
(b) Cell count.

Fig. 15. Switch time.

Fig. 16. Signaling cost.

monitoring is able to accelerate carrier scanning. We compare
it with the default manual search, and record the total search
time and number of cells scanned at 100 different locations.
Figure 14 shows that adaptive search finishes 70% complete
searches within 10s, 64% shorter than the exhaustive manual
search. Note that devices are allowed to switch before the com-
plete search (§V), so it waits shorter in practice. Figure 14b
counts the scanned cells, and validates that such savings come
from avoiding the unnecessary cell scans. The search time and
number of cells vary with locations and the cell density.

Second, we examine how well iCellular’s adaptive switch
reduces service disruption. In this experiment, we place the
phone at the border of two carriers’ coverages, and test the
switch time needed for iCellular and Project Fi for 50 runs.
The inter-carrier switch time is defined as the duration from the
de-registration from the old carrier to the registration to
the new carrier. For comparison purposes, we also calculate
the lower bound derived in (2) in §IV-B. Figure 15 shows that,
iCellular saves 76.7% switch time on average, compared with
Project Fi. Note that the current prototype has not achieved
the minimal switch time: it requires 8.8s on average. Under
high-speed mobility, this may delay the switch to the optimal
carrier network. We dig into the event logs, and discover that,
the current bottleneck lies in the SIM reconfiguration (mainly
due to the I/O overhead to the external hard SIM). iCellular has
to wait until the SIM card is reconfigured to switch to another
carrier. In the experiments, we find that 7.3s on average are
spent on the SIM card reconfiguration, which is beyond the
control of iCellular. The phone has no network service in this
period. The lower bound implies that, with faster SIM card
(e.g. in-memory soft SIM), iCellular could save up to 96.1%
of switch time compared with Project Fi.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 17. iCellular’s active monitoring has negligible impacts on data
performance. (a) Youtube. (b) Skype.

Fault Prevention: We next verify that iCellular handles
fault scenarios and prevents devices from switching to unwise
carrier networks. All three failure types in §IV-D have been
observed in our user study. Note that the failure scenarios are
less common in reality. We observe one instance of the for-
bidden access, where a Sprint 4G base station sets the access-
barring option for 10 min (possibly under maintenance). We
observe another instance of Figure 9, where T-mobile 4G is
available but T-Mobile 3G is not available. Since T-Mobile 4G
does not provide Voice over LTE (VoLTE) to Project Fi and
has to rely on its 3G network (using circuit-switching Fall-
back) for voice calls [46]. Consequently, the correct decision
should be to not switch to T-Mobile 4G, since voice calls
are not reachable there. iCellular detects it from the profiled
call preference and location update messages, and excludes
this access option from the candidate list. We also observe
uncoordinated mobility rules between the network and the
device (Figure 10). We validate that iCellular can detect and
avoid them.

Impact on Apps in Monitoring: We show that iCellular’s
active monitor does not disrupt the ongoing data ser-
vice at the device. We run the active monitor 100 times
with/without applications and its active data transfer. We test
with four applications and the results with/without iCellular’s
monitoring are similar. Figure 17 shows the performance
with/without iCellular’s monitoring for Youtube and Skype.
Enabling/disabling active monitoring has comparable applica-
tion performance. As explained in §IV-A, this is because the
carrier scanning procedure is performed only in the absence
of traffic.

Signaling Overhead: iCellular incurs moderate signaling
messages to the device and network. We record the device-
side signaling message rate under three conditions (in our
performance tests): (1) Idle: No monitoring/switch functions
are active. No extra cellular signaling messages are generated;
(2) Monitor: iCellular initiates its active monitoring. The
device should receive more broadcasted signals. However,
no extra signaling messages are generated to the network;
(3) Switch: iCellular initiates the switch to the new carrier
network. Because of the registration, extra signaling messages
are generated to both the device and the network. For all
scenarios, we count the radio-level (from RRC layer), core-
network level (from mobility and session management layers)
and the total signaling rate. Figure 16 shows that, the maxi-
mum observed signaling message rate is 32 message/sec (or
0.79 Kbps message volume equivalently). Such low overhead
is because that, iCellular only relies on the control-plane
cellular messages, whose volumes are relatively small by
design.

CPU & Memory: In all our tests, the maximum CPU
utilization is below 2%. The maximum memory usage is below

Fig. 18. CPU and battery usage of iCellular. (a) CPU usage. (b) Battery
usage.

20 MB (including virtual memory). Figure 18a shows a 20-min
log in a driving test: Its uses 16.45MB memory at maximum.

Energy Consumption: Since we cannot directly measure
the consumed power at Nexus 6/6P with an external power
meter (its battery is sealed, and hard to remove), we take
an application-level approach. We use a fully-charged Nexus
6 phone and run it for 24 hours. We use an app called
GO-Power-Master [2] to record energy consumption for each
component/app. Figure 18b shows one record, where iCellular
explicitly consumes about 4.75% of battery.

VII. HINTS FOR MULTI-CARRIER ACCESS IN 5G

While iCellular is designed for incrementally deployable
in 3G/4G, its solutions are instrumental to future 5G. We dis-
cuss some extensions in 5G that could benefit from iCellular,
and how iCellular can be extended in the new design.

Working With Network-Side Assistance: iCellular can work
in concert with network-side mechanisms for better perfor-
mance. For example, during the inter-carrier switch, iCellular
could benefit from the network-side downlink traffic buffering
and tunneling for more seamless migration. For each carrier,
its network-side solution can also benefit from iCellular with
device-side feedbacks on all available carriers. Note that the
carrier network still retains its final say on the switch decision
by rejecting the device-initiated switch requests.

Concurrent Access to Multiple Carriers: Due to the
hardware limitations, iCellular and existing solutions support
access to one carrier network each time. In long term, it is
still preferred to access multiple carriers simultaneously to
aggregate available carriers’ connectivity. We find that this is
achievable with the phone-side hardware modifications. The
solution is to adapt the sleep mode (called discontinuous
reception in 4G [7]). To save the energy, the carrier network
can instruct the device to go to the sleep mode (by configuring
the timers for the DRX) when there is no active data delivery.
In this case, the device can switch to other carriers to
send/receive data, and switch back to the old carrier when
the timer expires.

The concurrent access mechanism can benefit from our
iCellular’s design experience. For example, the adaptive mon-
itoring (§IV-A) can be incorporated with it to detect the better
carrier networks. The heterogeneity predictor (§IV-C) and
decision fault prevention (§IV-D) are also directly applicable
to determine whether it is worth using other carrier networks.

On Google Project Fi: Project Fi makes pioneering efforts
toward multi-carrier access in commodity phones. It explores
intelligent device-side inter-carrier switch by leveraging vari-
ous system-level information. In this work, we show that to
fully address the problems in §III, the low-level cellular infor-
mation is critical for device-side decision. iCellular provides

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: DEVICE-CUSTOMIZED MULTI-CARRIER NETWORK ACCESS ON COMMODITY SMARTPHONES 13

an alternative dimension to improve Project Fi’s efficiency
with the cross-layer cellular knowledge.

VIII. RELATED WORK

In recent years, exploiting multiple cellular carriers attracts
research efforts. These efforts span on both network and
device sides. The network-side efforts include sharing the radio
resource [22], [31], [42] and infrastructure [17], [18], [33],
[49] between carriers, which helps to reduce deployment cost.
On the device side, both dual SIM cards [1], [20] and single
universal SIM card [14], [24], [26] are used for multi-carrier
access. But multi-SIM phones provide multi-carrier access in
a constrained fashion. The number of accessible carriers is
limited by the number of SIM cards (usually two due to energy
and radio interference constraints). Our work complements the
single-SIM approach for incremental deployment. It differs
from existing efforts by leveraging low-level cellular informa-
tion, and offering device-defined selections in a responsive and
non-disruptive manner.

iCellular leverages the rich cellular accesses on the device.
Similar efforts use multiple physical interfaces from WiFi
and cellular, including WiFi offloading [16], [21], [23], P2P
interfaces between devices using different carriers [34], and
multipath-TCP [41], [48]. These efforts have been partially
standardized by IETF [32]. iCellular differs from all these
in that it still uses a single cellular interface. Similar issues
may also occur with traditional handoffs within a single
carrier [44], [45], [50], which are caused by the network-
side problematic management. Instead, iCellular targets inter-
carrier migration, and chooses to let end devices customize
the selection strategies among carriers.

IX. CONCLUSION

The current design of cellular networks limits the device’s
ability to fully explore multi-carrier access. The fundamental
problem is that, existing mobile networks place most decisions
and operational complexity on the infrastructure side. This
network-centric design is partly inherited from the legacy
telecom-based architecture paradigm. As a result, the end
intelligence is limited: Without runtime, fine-grained cellular
information, the device cannot properly exploit the multi-
carrier access. In the multi-carrier access context, devices may
suffer from low-quality access while incurring unnecessary
service disruption. In this work, we describe iCellular, which
seeks to leverage the fine-grained cellular information and the
available mechanism at the device. It thus dynamically selects
better mobile carrier through adaptive monitoring and online
learning. Our initial evaluation validates the feasibility of this
approach. We hope our study could stimulate more research
efforts in the multi-carrier access, and provide valuable input
into the standardization process of the upcoming 5G.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their constructive comments.

REFERENCES

[1] Dual SIM Phone. Accessed: Sep. 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Dual_SIM

[2] GO Power Master. Accessed: Sep. 2015. [Online]. Available:
https://play.google.com/store/apps/details?id=com.gau.go.launcherex.
gowidget.gopowermaster&hl=en

[3] 3GPP. LTE UE Category. Accessed: Sep. 2018. [Online]. Available:
http://www.3gpp.org/keywords-acronyms/1612-ue-category

[4] Quality of Service (QoS) Concept and Architecture, document TS23.107,
3GPP, 2002.

[5] AT Command Set for User Equipment (UE), document TS27.007, 3GPP,
2011.

[6] User Equipment (UE) Procedures in Idle Mode and Procedures for Cell
Reselection in Connected Mode, document TS25.304, 3GPP, 2012.

[7] Radio Resource Control (RRC), document TS36.331, 3GPP, 2012.
[8] Non-Access-Stratum (NAS) for EPS, document TS24.301, 3GPP,

Jun. 2013.
[9] User Equipment Procedures in Idle Mode, document TS36.304, 3GPP,

2013.
[10] Non-Access-Stratum (NAS) Functions Related to Mobile Station (MS) in

Idle Mode, document TS23.122, 3GPP, 2015.
[11] 5G NR; User Equipment (UE) Procedures in Idle Mode,

document Ts38.304, 3GPP, Sep. 2017.
[12] V. Agababov et al., “Flywheel: Google’s data compression proxy for the

mobile Web,” in Proc. USENIX NSDI, 2015, pp. 367–380.
[13] Android. Connectivitymanager. Accessed: Sep. 2018. [Online]. Avail-

able: https://developer.
android.com/reference/android/net/ConnectivityManager.html

[14] Apple. Apple SIM for iPad. Accessed: Sep. 2018. [Online]. Available:
https://www.apple.
com/ipad/apple-sim/

[15] N. Armstrong. (2015). Network Handover in Google Fi. [Online].
Available: http://nicholasarmstrong.com/2015/08/network-handover-
google-fi/

[16] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3G using WiFi,” in Proc. ACM MobiSys, 2010, pp. 209–222.

[17] R. Copeland and N. Crespi, “Resolving ten MVNO issues with EPS
architecture, VoLTE and advanced policy server,” in Proc. IEEE Int.
Conf. Intell. Next Gener. Netw. (ICIN), Oct. 2011, pp. 29–34.

[18] X. Costa-Perez, J. Swetina, T. Guo, R. Mahindra, and S. Rangarajan,
“Radio access network virtualization for future mobile carrier networks,”
IEEE Commun. Mag., vol. 51, no. 7, pp. 27–35, Jul. 2013.

[19] S. L. Crawford, “Extensions to the CART algorithm,” Int. J. Man-Mach.
Stud., vol. 31, no. 2, pp. 197–217, 1989.

[20] S. Deb, K. Nagaraj, and V. Srinivasan, “MOTA: Engineering an operator
agnostic mobile service,” in Proc. ACM MobiCom, 2011, pp. 133–144.

[21] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “WiFi, LTE,
or both?: Measuring multi-homed wireless Internet performance,” in
Proc. ACM IMC, 2014, pp. 181–194.

[22] P. Di Francesco, F. Malandrino, and L. A. DaSilva, “Mobile network
sharing between operators: A demand trace-driven study,” in Proc. ACM
CSWS, 2014, pp. 39–44.

[23] S. Dimatteo, P. Hui, B. Han, and V. O. K. Li, “Cellular traffic offloading
through WiFi networks,” in Proc. IEEE MASS, Oct. 2011, pp. 192–201.

[24] Engadget. Apple and Samsung in Talks to Adopt E-SIM
Technology. Accessed: Jul. 2015. [Online]. Available:
http://www.engadget.com/2015/07/16/apple-samsung-e-sim/

[25] Google. YouTube Android Player API. Accessed: Sep. 2015. [Online].
Available: https://developers.google.com/youtube/android/player/
reference/com/google/android/youtube/player/YouTubePlayer

[26] Google. (2015). Project Fi. [Online]. Available: https://fi.google.com/
about/

[27] Huawei. Skytone. Accessed: Sep. 2018. [Online]. Available:
http://skytone.vmall.com/

[28] E. Ikonomovska, J. Gama, and S. Džeroski, “Learning model trees from
evolving data streams,” Data Mining Knowl. Discovery, vol. 23, no. 1,
pp. 128–168, 2011.

[29] S. Jelassi, G. Rubino, H. Melvin, H. Youssef, and G. Pujolle, “Quality
of experience of VoIP service: A survey of assessment approaches and
open issues,” IEEE Commun. Surveys Tuts., vol. 14, no. 2, pp. 491–513,
2nd Quart., 2012.

[30] JESUSFREKE. (2017). Smali and Baksmali Assembler/Disassembler.
[Online]. Available: https://github.com/JesusFreke/smali

[31] M. Jokinen, M. Mäkeläinen, and T. Hänninen, “Co-primary spectrum
sharing with inter-operator D2D trial,” in Proc. ACM MobiCom, 2014,
pp. 291–294.

[32] S. Kanugovi, S. Vasudevan, F. Baboescu, J. Zhu, S. Peng, and
J. Mueller, “Multiple access management services,” IETF,
Tech. Rep. draft-kanugovi-intarea-mams-protocol-03, Mar. 2017.

[33] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “NVS:
A substrate for virtualizing wireless resources in cellular networks,”
IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 1333–1346, Oct. 2012.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[34] J. Lee, K. Lee, Y. Kim, and S. Chong, “CarrierMix: How much can
user-side carrier mixing help?” IEEE Trans. Mobile Comput., vol. 16,
no. 1, pp. 16–29, Jan. 2017.

[35] Y. Li et al., “iCellular: Device-customized cellular network access on
commodity smartphones,” in Proc. 13th USENIX Symp. Netw. Syst.
Design Implement. (NSDI). Santa Clara, CA, USA: USENIX Associ-
ation, Mar. 2016, pp. 643–656.

[36] Y. Li et al., “Mobileinsight: Extracting and analyzing cellular net-
work information on smartphones,” in Proc. ACM 22nd Annu. Int.
Conf. Mobile Comput. Netw. (MobiCom) New York, NY, USA, 2016,
pp. 202–215.

[37] MathWorks. Variable Importance in Regression Tree. Accessed:
Sep. 2018. [Online]. Available: http://www.mathworks.com/help/
stats/compactregressiontree.predictorimportance.html

[38] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang, “Measuring the
quality of experience of HTTP video streaming,” in Proc. IFIP/IEEE
Integr. Netw. Manage. (IM), May 2011, pp. 485–492

[39] Mozilla. Remotely Debugging Firefox for Android. Accessed: Sep. 2018.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Tools/
Remote_Debugging/Firefox_for_Android

[40] NGMN. NGMN 5G White Paper. Accessed: Feb. 2015. [Online]. Avail-
able: https://www.ngmn.org/work-programme/5g-initiative/

[41] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure,
“Exploring mobile/WiFi handover with multipath TCP,” in Proc. ACM
CellNet, 2012, pp. 31–36.

[42] J. S. Panchal, R. D. Yates, and M. M. Buddhikot, “Mobile network
resource sharing options: Performance comparisons,” IEEE Trans. Wire-
less Commun., vol. 12, no. 9, pp. 4470–4482, Sep. 2013.

[43] S. Rosen et al., “Discovering fine-grained RRC state dynamics and
performance impacts in cellular networks,” in Proc. ACM MobiCom,
2014, pp. 177–188.

[44] A. K. Salkintzis, M. Hammer, I. Tanaka, and C. Wong, “Voice call han-
dover mechanisms in next-generation 3GPP systems,” IEEE Commun.
Mag., vol. 47, no. 2, pp. 46–56, Feb. 2009.

[45] K. E. Suleiman, A.-E. M. Taha, and H. S. Hassanein, “Understanding
the interactions of handover-related self-organization schemes,” in Proc.
17th ACM Int. Conf. Modeling, Anal. Simulation Wireless Mobile
Syst. (MSWiM), 2014, pp. 285–294.

[46] G.-H. Tu, C. Peng, H. Wang, C. Y. Li, and S. Lu, “How voice calls
affect data in operational LTE networks,” in Proc. MobiCom, Oct. 2013,
pp. 87–98.

[47] G.-H. Tu et al., “Accounting for roaming users on mobile data access:
Issues and root causes,” in Proc. ACM MobiSys, 2013, pp. 305–318.

[48] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”
in Proc. USENIX NSDI, 2011, p. 8.

[49] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel, “LTE mobile network
virtualization,” Mobile Netw. Appl., vol. 16, no. 4, pp. 424–432, 2011.

[50] H. Zhang, X. Wen, B. Wang, W. Zheng, and Y. Sun, “A novel
handover mechanism between femtocell and macrocell for LTE based
networks,” in Proc. 2nd Int. Conf. Commun. Softw. Netw. (ICCSN), 2010,
pp. 228–231.

Yuanjie Li received the bachelor’s degree from
Tsinghua University in 2012, and the the Ph.D.
degree in computer science from the University of
California at Los Angeles (UCLA), Los Angeles,
in 2017. His research interests include networked
systems, mobile computing, and network security.
He is a member of the Wireless Networking Group.

Chunyi Peng received the Ph.D. degree in com-
puter science from University of California at Los
Angeles, in 2013. He is currently an Assistant pro-
fessor of computer science with Purdue University.
Previously, she was an Assistant Professor with the
Department of Computer Science Engineering, The
Ohio State University.

Haotian Deng received the B.E. degree from Tongji
University in 2013 and the M.S. degree from The
State University of New York at Buffalo in 2015.
He is currently pursuing the Ph.D. degree in com-
puter science with Purdue University. His research
interests are mainly on mobile networks.

Zengwen Yuan received the B.S. degree from
Shanghai Jiao Tong University in 2015. He is cur-
rently pursuing the Ph.D. degree in computer science
with the University of California at Los Angeles. His
research interests include mobile networks, mobile
computing, and wireless security.

Guan-Hua Tu received the Ph.D. degree in com-
puter science from the University of California at
Los Angeles, Los Angeles, CA, USA, in 2015.
He is currently an Assistant Professor with the
Computer Science and Engineering Department,
Michigan State University, MI, USA. His research
interests cover focusing on mobile networks, mobile
IoT, wireless networking, and network security.

Jiayao Li is currently pursuing the master’s degree
in computer science with the University of California
at Los Angeles.

Songwu Lu is currently a Professor of computer
science with the University of California at Los
Angeles. His research interests include mobile net-
working and systems, cloud computing, and network
security.

Xi Li was the Director of research programs with the
Embedded System Lab, examining various aspects
of embedded systems with a focus on performance,
availability, flexibility, and energy efficiency. He has
led several national key projects, several national
863 projects, and NSFC projects. He is currently an
Associate Professor and the Vice Dean of the School
of Software Engineering, University of Science and
Technology of China. He is a member of the ACM
and a Senior Member of the CCF.

View publication statsView publication stats

https://www.researchgate.net/publication/327945736

